Definition
It takes a rather involved string of definitions to state more precisely what a holomorphic sheaf is:
Given a simply connected open subset D of Cn, there is an associated sheaf OD of holomorphic functions on D. Throughout, U is any open subset of D. Then the set OD(U) of holomorphic functions from U to C has a natural (componentwise) C-algebra structure and one can collate sections that agree on intersections to create larger sections; this is outlined in more detail at sheaf.
An ideal I of OD is a sheaf such that I(U) is always a complex submodule of OD(U).
Given a coherent such I, the quotient sheaf OD / I is such that (U) is always a module over OD(U); we call such a sheaf a OD-module. It is also coherent, and its restriction to its support A is a coherent sheaf OA of local C-algebras. Such a substructure (A,OA) of (D,OD) is called a closed complex subspace of D.
Given a topological space X and a sheaf OX of local C-algebras, if for any point x in X there is an open subset V of X containing it and a subset D of Cn so that the restriction (V,OV) of (X,OX) is isomorphic to a closed complex subspace of D, OX is also coherent, and we call it a holomorphic sheaf.
Read more about this topic: Holomorphic Sheaf
Famous quotes containing the word definition:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)