Hodge Structure - Mixed Hodge Structures

Mixed Hodge Structures

It was noticed by Jean-Pierre Serre in the 1960s based on the Weil conjectures that even singular (possibly reducible) and non-complete algebraic varieties should admit 'virtual Betti numbers'. More precisely, one should be able to assign to any algebraic variety X a polynomial PX(t), called its virtual Poincaré polynomial, with the properties

  • if X is nonsingular and projective (or complete);
  • if Y is a closed algebraic subset of X and U=X\Y.

The existence of such polynomials would follow from the existence of an analogue of Hodge structure in the cohomologies of a general (singular and non-complete) algebraic variety. The novel feature is that the nth cohomology of a general variety looks as if it contained pieces of different weights. This led Alexander Grothendieck to his conjectural theory of motives and motivated a search for an extension of Hodge theory, which culminated in the work of Pierre Deligne. He introduced the notion of a mixed Hodge structure, developed techniques for working with them, gave their construction (based on Hironaka's resolution of singularities) and related them to the weights on l-adic cohomology, proving the last part of the Weil conjectures.

Read more about this topic:  Hodge Structure

Famous quotes containing the words mixed and/or structures:

    Let us not deny it up and down. Providence has a wild, rough, incalculable road to its end, and it is of no use to try to whitewash its huge, mixed instrumentalities, or to dress up that terrific benefactor in a clean shirt and white neckcloth of a student of divinity.
    Ralph Waldo Emerson (1803–1882)

    If there are people who feel that God wants them to change the structures of society, that is something between them and their God. We must serve him in whatever way we are called. I am called to help the individual; to love each poor person. Not to deal with institutions. I am in no position to judge.
    Mother Teresa (b. 1910)