Hodge Structure - Mixed Hodge Structures

Mixed Hodge Structures

It was noticed by Jean-Pierre Serre in the 1960s based on the Weil conjectures that even singular (possibly reducible) and non-complete algebraic varieties should admit 'virtual Betti numbers'. More precisely, one should be able to assign to any algebraic variety X a polynomial PX(t), called its virtual Poincaré polynomial, with the properties

  • if X is nonsingular and projective (or complete);
  • if Y is a closed algebraic subset of X and U=X\Y.

The existence of such polynomials would follow from the existence of an analogue of Hodge structure in the cohomologies of a general (singular and non-complete) algebraic variety. The novel feature is that the nth cohomology of a general variety looks as if it contained pieces of different weights. This led Alexander Grothendieck to his conjectural theory of motives and motivated a search for an extension of Hodge theory, which culminated in the work of Pierre Deligne. He introduced the notion of a mixed Hodge structure, developed techniques for working with them, gave their construction (based on Hironaka's resolution of singularities) and related them to the weights on l-adic cohomology, proving the last part of the Weil conjectures.

Read more about this topic:  Hodge Structure

Famous quotes containing the words mixed and/or structures:

    Remember that the wit, humour, and jokes of most mixed companies are local. They thrive in that particular soil, but will not often bear transplanting.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    The philosopher believes that the value of his philosophy lies in its totality, in its structure: posterity discovers it in the stones with which he built and with which other structures are subsequently built that are frequently better—and so, in the fact that that structure can be demolished and yet still possess value as material.
    Friedrich Nietzsche (1844–1900)