History of Statistics - Design of Experiments

Design of Experiments

This section relies on references to primary sources. Please add references to secondary or tertiary sources.

In 1747, while serving as surgeon on HM Bark Salisbury, James Lind carried out a controlled experiment to develop a cure for scurvy. In this study his subjects' cases "were as similar as I could have them", that is he provided strict entry requirements to reduce extraneous variation. The men were paired, which provided blocking. From a modern perspective, the main thing that is missing is randomized allocation of subjects to treatments.

James Lind is today often described as a one-factor-at-a-time experimenter. One-factor-at-a-time (OFAT) experimentation reached its zenith with Thomas Edison's "trial and error" methods.

A theory of statistical inference was developed by Charles S. Peirce in "Illustrations of the Logic of Science" (1877–1878) and "A Theory of Probable Inference" (1883), two publications that emphasized the importance of randomization-based inference in statistics. In another study, Peirce randomly assigned volunteers to a blinded, repeated-measures design to evaluate their ability to discriminate weights. Peirce's experiment inspired other researchers in psychology and education, which developed a research tradition of randomized experiments in laboratories and specialized textbooks in the 1800s. Peirce also contributed the first English-language publication on an optimal design for regression-models in 1876. A pioneering optimal design for polynomial regression was suggested by Gergonne in 1815. In 1918 Kirstine Smith published optimal designs for polynomials of degree six (and less).

The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, was pioneered by Abraham Wald in the context of sequential tests of statistical hypotheses. Surveys are available of optimal sequential designs, and of adaptive designs. One specific type of sequential design is the "two-armed bandit", generalized to the multi-armed bandit, on which early work was done by Herbert Robbins in 1952.

The term "design of experiments" (DOE) derives from early statistical work performed by Sir Ronald Fisher. He was described by Anders Hald as "a genius who almost single-handedly created the foundations for modern statistical science." Fisher initiated the principles of design of experiments and elaborated on his studies of "analysis of variance". Perhaps even more important, Fisher began his systematic approach to the analysis of real data as the springboard for the development of new statistical methods. He began to pay particular attention to the labour involved in the necessary computations performed by hand, and developed methods that were as practical as they were founded in rigour. In 1925, this work culminated in the publication of his first book, Statistical Methods for Research Workers. This went into many editions and translations in later years, and became a standard reference work for scientists in many disciplines.

A methodology for designing experiments was proposed by Ronald A. Fisher, in his innovative book The Design of Experiments (1935) which also became a standard. As an example, he described how to test the hypothesis that a certain lady could distinguish by flavour alone whether the milk or the tea was first placed in the cup. While this sounds like a frivolous application, it allowed him to illustrate the most important ideas of experimental design: see Lady tasting tea.

Agricultural science advances served to meet the combination of larger city populations and fewer farms. But for crop scientists to take due account of widely differing geographical growing climates and needs, it was important to differentiate local growing conditions. To extrapolate experiments on local crops to a national scale, they had to extend crop sample testing economically to overall populations. As statistical methods advanced (primarily the efficacy of designed experiments instead of one-factor-at-a-time experimentation), representative factorial design of experiments began to enable the meaningful extension, by inference, of experimental sampling results to the population as a whole. But it was hard to decide how representative was the crop sample chosen. Factorial design methodology showed how to estimate and correct for any random variation within the sample and also in the data collection procedures.

Read more about this topic:  History Of Statistics

Famous quotes containing the words design and/or experiments:

    Delay always breeds danger; and to protract a great design is often to ruin it.
    Miguel De Cervantes (1547–1616)

    My experiments did not turn out quite like yours, Henry. But science, like love, has her little surprises.
    William Hurlbut (1883–?)