Hilbert Manifold - Examples

Examples

  • Any Hilbert space H is a Hilbert manifold with a single global chart given by the identity function on H. Moreover, since H is a vector space, the tangent space TpH to H at any point pH is canonically isomorphic to H itself, and so has a natural inner product, the "same" as the one on H. Thus, H can be given the structure of a Riemannian manifold with metric
where 〈·, ·〉H denotes the inner product in H.
  • Similarly, any open subset of a Hilbert space is a Hilbert manifold and a Riemannian manifold under the same construction as for the whole space.
  • There are several mapping spaces between manifolds which can be viewed as Hilbert spaces by only considering maps of suitable Sobolev class. For example we can consider the space LM of all H1 maps from the unit circle S1 into a manifold M. This can be topologized via the compact open topology as a subspace of the space of all continuous mappings from the circle to M, i.e. the free loop space of M. The Sobolev kind mapping space LM described above is homotopy equivalent to the free loop space. This makes it suited to the study of algebraic topology of the free loop space, especially in the field of string topology. We can do an analogous Sobolev construction for the loop space, making it a codimension d Hilbert submanifold of LM, where d is the dimension of M.

Read more about this topic:  Hilbert Manifold

Famous quotes containing the word examples:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)