Hicksian Demand Function - Mathematical Properties

Mathematical Properties

If the consumer's utility function is continuous and represents a locally nonsatiated preference relation, then the Hicksian demand correspondence satisfies the following properties:

i. Homogeneity of degree zero in p: For all, . This is because the same x that minimizes also minimizes subject to the same constraint.

ii. No excess demand: The constraint holds with strict equality, . This follows from continuity of the utility function. Informally, they could simply spend less until utility was exactly .

Read more about this topic:  Hicksian Demand Function

Famous quotes containing the words mathematical and/or properties:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)