Heteroscedasticity-consistent Standard Errors - Definition

Definition

Assume that we are regressing the linear regression model


y = X \beta + u, \,

where X is the design matrix and β is a k × 1 column vector of parameters to be estimated.

The ordinary least squares (OLS) estimator is


\widehat \beta_{OLS} = (X' X)^{-1} X' y. \,

If the sample errors have equal variance σ2 and are uncorrelated, then the least-squares estimate of β is BLUE (best linear unbiased estimator), and its variance is easily estimated with

where are regression residuals.

When the assumptions of are violated, the OLS estimator loses its desirable properties. Indeed,

where .

While the OLS point estimator remains unbiased, it is not "best" in the sense of having minimum mean square error, and the OLS variance estimator does not provide a consistent estimate of the variance of the OLS estimates.

Read more about this topic:  Heteroscedasticity-consistent Standard Errors

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)