Hensel's Lemma - Examples

Examples

Suppose that p is an odd prime number and a is a quadratic residue modulo p that is nonzero mod p. Then Hensel's lemma implies that a has a square root in the ring of p-adic integers Zp. Indeed, let f(x)=x2-a. Its derivative is 2x, so if r is a square root of a mod p we have

and ,

where the second condition depends on p not being 2. The basic version of Hensel's lemma tells us that starting from r1= r we can recursively construct a sequence of integers { rk } such that

This sequence converges to some p-adic integer b and b2=a. In fact, b is the unique square root of a in Zp congruent to r1 modulo p. Conversely, if a is a perfect square in Zp and it is not divisible by p then it is a nonzero quadratic residue mod p. Note that the quadratic reciprocity law allows one to easily test whether a is a nonzero quadratic residue mod p, thus we get a practical way to determine which p-adic numbers (for p odd) have a p-adic square root, and it can be extended to cover the case p=2 using the more general version of Hensel's lemma (an example with 2-adic square roots of 17 is given later).

To make the discussion above more explicit, let us find a "square root of 2" (the solution to ) in the 7-adic integers. Modulo 7 one solution is 3 (we could also take 4), so we set . Hensel's lemma then allows us to find as follows:

that is,

And sure enough, . (If we had used the Newton method recursion directly in the 7-adics, then r2 = r1 - f(r1)/f'(r1) = 3 - 7/6 = 11/6, and 11/6 ≡ 10 mod 72.)

We can continue and find . Each time we carry out the calculation (that is, for each successive value of k), one more base 7 digit is added for the next higher power of 7. In the 7-adic integers this sequence converges, and the limit is a square root of 2 in Z7 which has initial 7-adic expansion

If we started with the initial choice then Hensel's lemma would produce a square root of 2 in Z7 which is congruent to 4 (mod 7) instead of 3 (mod 7) and in fact this second square root would be the negative of the first square root (which is consistent with 4 = -3 mod 7).

As an example where the original version of Hensel's lemma is not valid but the more general one is, let f(x) = x2 - 17 and a = 1. Then f(a) = -16 and f'(a) = 2, so |f(a)|2 < |f′(a)|22, which implies there is a unique 2-adic integer b satisfying b2 = 17 and |b- a|2 < |f'(a)|2 = 1/2, i.e., b ≡ 1 mod 4. There are two square roots of 17 in the 2-adic integers, differing by a sign, and although they are congruent mod 2 they are not congruent mod 4. This is consistent with the general version of Hensel's lemma only giving us a unique 2-adic square root of 17 that is congruent to 1 mod 4 rather than mod 2. If we had started with the initial approximate root a = 3 then we could apply the more general Hensel's lemma again to find a unique 2-adic square root of 17 which is congruent to 3 mod 4. This is the other 2-adic square root of 17.

In terms of lifting roots of x2 - 17 from one modulus 2k to the next 2k+1, the lifts starting with the root 1 mod 2 are as follows:

1 mod 2 --> 1, 3 mod 4
1 mod 4 --> 1, 5 mod 8 and 3 mod 4 ---> 3, 7 mod 8
1 mod 8 --> 1, 9 mod 16 and 7 mod 8 ---> 7, 15 mod 16, while 3 mod 8 and 5 mod 8 don't lift to roots mod 16
9 mod 16 --> 9, 25 mod 32 and 7 mod 16 --> 7, 23 mod 16, while 1 mod 16 and 15 mod 16 don't lift to roots mod 32.

For every k at least 3, there are four roots of x2 - 17 mod 2k, but if we look at their 2-adic expansions we can see that in pairs they are converging to just two 2-adic limits. For instance, the four roots mod 32 break up into two pairs of roots which each look the same mod 16:

9 = 1 + 23 and 25 = 1 + 23 + 24, 7 = 1 + 2 + 22 and 23 = 1 + 2 + 22 + 24.

The 2-adic square roots of 17 have expansions

1 + 23 + 25 + 26 + 27 + 29 + 210 + ..., 1 + 2 + 22 + 24 + 28 + 211...

Another example where we can use the more general version of Hensel's lemma but not the basic version is a proof that any 3-adic integer c ≡ 1 mod 9 is a cube in Z3. Let f(x) = x3 - c and take initial approximation a = 1. The basic Hensel's lemma can't be used to find roots of f(x) since f'(r) ≡ 0 mod 3 for every r. To apply the general version of Hensel's lemma we want |f(1)|3 < |f'(1)|32, which means c ≡ 1 mod 27. That is, if c ≡ 1 mod 27 then the general Hensel's lemma tells us f(x) has a 3-adic root, so c is a 3-adic cube. However, we wanted to have this result under the weaker condition that c ≡ 1 mod 9. If c ≡ 1 mod 9 then c ≡ 1, 10, or 19 mod 27. We can apply the general Hensel's lemma three times depending on the value of c mod 27: if c ≡ 1 mod 27 then use a = 1, if c ≡ 10 mod 27 then use a = 4 (since 4 is a root of f(x) mod 27), and if c ≡ 19 mod 27 then use a = 7. (It is not true that every c ≡ 1 mod 3 is a 3-adic cube, e.g., 4 is not a 3-adic cube since it is not a cube mod 9.)

In a similar way, after some preliminary work Hensel's lemma can be used to show that for any odd prime number p, any p-adic integer c which is 1 mod p2 is a p-th power in Zp. (This is false when p is 2.)

Read more about this topic:  Hensel's Lemma

Famous quotes containing the word examples:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)