Zero Argument
Since H is usually used in integration, and the value of a function at a single point does not affect its integral, it rarely matters what particular value is chosen of H(0). Indeed when H is considered as a distribution or an element of (see Lp space) it does not even make sense to talk of a value at zero, since such objects are only defined almost everywhere. If using some analytic approximation (as in the examples above) then often whatever happens to be the relevant limit at zero is used.
There exist, however, reasons for choosing a particular value.
- H(0) = ½ is often used since the graph then has rotational symmetry; put another way, H-½ is then an odd function. In this case the following relation with the sign function holds for all x:
- H(0) = 1 is used when H needs to be right-continuous. For instance cumulative distribution functions are usually taken to be right continuous, as are functions integrated against in Lebesgue–Stieltjes integration. In this case H is the indicator function of a closed semi-infinite interval:
- H(0) = 0 is used when H needs to be left-continuous. In this case H is an indicator function of an open semi-infinite interval:
Read more about this topic: Heaviside Step Function
Famous quotes containing the word argument:
“Any authentic work of art must start an argument between the artist and his audience.”
—Rebecca West (18921983)
“This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. Its no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.”
—Leontine Young (20th century)