Hausdorff Measure - Relation With Hausdorff Dimension

Relation With Hausdorff Dimension

One of several possible equivalent definitions of the Hausdorff dimension is


\operatorname{dim}_{\mathrm{Haus}}(S)=\inf\{d\ge 0:H^d(S)=0\}=\sup\bigl(\{d\ge 0:H^d(S)=\infty\}\cup\{0\}\bigr),

where we take

Read more about this topic:  Hausdorff Measure

Famous quotes containing the words relation and/or dimension:

    The instincts of the ant are very unimportant, considered as the ant’s; but the moment a ray of relation is seen to extend from it to man, and the little drudge is seen to be a monitor, a little body with a mighty heart, then all its habits, even that said to be recently observed, that it never sleeps, become sublime.
    Ralph Waldo Emerson (1803–1882)

    God cannot be seen: he is too bright for sight; nor grasped: he is too pure for touch; nor measured: for he is beyond all sense, infinite, measureless, his dimension known to himself alone.
    Marcus Minucius Felix (2nd or 3rd cen. A.D.)