Blockwise Formula
Suppose the design matrix can be decomposed by columns as . Define the Hat operator as . Similarly, define the residual operator as . Then the Hat matrix of can be decomposed as follows:
There are a number of applications of such a partitioning. The classical application has a column of all ones, which allows one to analyze the effects of adding an intercept term to a regression. Another use is in the fixed effects model, where is a large sparse matrix of the dummy variables for the fixed effect terms. One can use this partition to compute the hat matrix of without explicitly forming the matrix, which might be too large to fit into computer memory.
Read more about this topic: Hat Matrix
Famous quotes containing the word formula:
“Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the beings which compose it, if moreover this intelligence were vast enough to submit these data to analysis, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.”
—Pierre Simon De Laplace (17491827)