Harshad Number - Consecutive Harshad Numbers

Consecutive Harshad Numbers

H.G. Grundman proved in 1994 that, in base 10, no 21 consecutive integers are all Harshad numbers. She also found the smallest 20 consecutive integers that are all Harshad numbers; they exceed 1044363342786.

In binary, there are infinitely many sequences of four consecutive Harshad numbers; in ternary, there are infinitely many sequences of six consecutive Harshad numbers. Both of these facts were proven by T. Cai in 1996.

In general, such maximal sequences run from N · bk - b to N · bk + (b-1), where b is the base, k is a relatively large power, and N is a constant. Interpolating zeroes into N will not change the sequence of digital sums, so it is possible to convert any solution into a larger one by interpolating a suitable number of zeroes, just as 21 and 201 and 2001 are all Harshad numbers base 10. Thus any solution implies an infinite class of solutions.

Read more about this topic:  Harshad Number

Famous quotes containing the word numbers:

    What culture lacks is the taste for anonymous, innumerable germination. Culture is smitten with counting and measuring; it feels out of place and uncomfortable with the innumerable; its efforts tend, on the contrary, to limit the numbers in all domains; it tries to count on its fingers.
    Jean Dubuffet (1901–1985)