Harmonic Number - Special Values For Fractional Arguments

Special Values For Fractional Arguments

There are the following special analytic values for fractional arguments between 0 and 1, given by the integral

More may be generated from the recurrence relation or from the reflection relation .

For every, integer or not, we have:

Based on, we have:, where is the Euler–Mascheroni constant or, more generally, for every n we have:

Read more about this topic:  Harmonic Number

Famous quotes containing the words special, values, fractional and/or arguments:

    Fashions change, and with the new psychoanalytical perspective of the postwar period [WWII], child rearing became enshrined as the special responsibility of mothers ... any shortcoming in adult life was now seen as rooted in the failure of mothering during childhood.
    Sylvia Ann Hewitt (20th century)

    Any relation to the land, the habit of tilling it, or mining it, or even hunting on it, generates the feeling of patriotism. He who keeps shop on it, or he who merely uses it as a support to his desk and ledger, or to his manufactory, values it less.
    Ralph Waldo Emerson (1803–1882)

    Hummingbird
    stay for a fractional sharp
    sweetness, and’s gone, can’t take
    more than that.
    Denise Levertov (b. 1923)

    The second [of Zeno’s arguments about motion] is the one called “Achilles.” This is to the effect that the slowest as it runs will never be caught by the quickest. For the pursuer must first reach the point from which the pursued departed, so that the slower must always be some distance in front.
    Zeno Of Elea (c. 490–430 B.C.)