Hardy Space - Hardy Spaces On The Unit Circle

Hardy Spaces On The Unit Circle

The Hardy spaces defined in the preceding section can also be viewed as certain closed vector subspaces of the complex Lp spaces on the unit circle. This connection is provided by the following theorem (Katznelson 1976, Thm 3.8): Given fHp, with p > 0, the radial limit

\tilde f\left(\mathrm{e}^{\mathrm{i}\theta}\right) =
\lim_{r\to 1} f\left(r \mathrm{e}^{\mathrm{i}\theta}\right)

exists for almost every θ. The function belongs to the Lp space for the unit circle, and one has that

Denoting the unit circle by T, and by Hp(T) the vector subspace of Lp(T) consisting of all limit functions, when f varies in Hp, one then has that for p ≥ 1,

(Katznelson 1976), where the ĝ(n) are the Fourier coefficients of a function g integrable on the unit circle,

\forall n \in \mathbb{Z}, \ \ \ \hat{g}(n) = \frac{1}{2\pi}\int_0^{2\pi}
g\left(\mathrm{e}^{i\phi}\right) \mathrm{e}^{-in\phi} \, \mathrm{d}\phi.

The space Hp(T) is a closed subspace of Lp(T). Since Lp(T) is a Banach space (for 1 ≤ p ≤ ∞), so is Hp(T).

The above can be turned around. Given a function ∈ Lp(T), with p ≥ 1, one can regain a (harmonic) function f on the unit disk by means of the Poisson kernel Pr:

f\left(r \mathrm{e}^{\mathrm{i}\theta}\right)=
\frac{1}{2\pi} \int_0^{2\pi} P_r\left(\theta-\phi\right)
\tilde f\left(\mathrm{e}^{\mathrm{i}\phi}\right) \, \mathrm{d}\phi, \ \ \ r < 1,

and f belongs to Hp exactly when is in Hp(T). Supposing that is in Hp(T). i.e. that has Fourier coefficients (an)nZ with an = 0 for every n < 0, then the element f of the Hardy space Hp associated to is the holomorphic function

In applications, those functions with vanishing negative Fourier coefficients are commonly interpreted as the causal solutions. Thus, the space H2 is seen to sit naturally inside L2 space, and is represented by infinite sequences indexed by N; whereas L2 consists of bi-infinite sequences indexed by Z.

Read more about this topic:  Hardy Space

Famous quotes containing the words hardy, spaces, unit and/or circle:

    I look back at it amid the rain
    For the very last time; for my sand is sinking,
    And I shall traverse old love’s domain
    Never again.
    —Thomas Hardy (1840–1928)

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)

    During the Suffragette revolt of 1913 I ... [urged] that what was needed was not the vote, but a constitutional amendment enacting that all representative bodies shall consist of women and men in equal numbers, whether elected or nominated or coopted or registered or picked up in the street like a coroner’s jury. In the case of elected bodies the only way of effecting this is by the Coupled Vote. The representative unit must not be a man or a woman but a man and a woman.
    George Bernard Shaw (1856–1950)

    The lifelong process of caregiving, is the ultimate link between caregivers of all ages. You and I are not just in a phase we will outgrow. This is life—birth, death, and everything in between.... The care continuum is the cycle of life turning full circle in each of our lives. And what we learn when we spoon-feed our babies will echo in our ears as we feed our parents. The point is not to be done. The point is to be ready to do again.
    Paula C. Lowe (20th century)