Definition
Suppose that (M,ω) is a symplectic manifold. Since the symplectic form ω is nondegenerate, it sets up a fiberwise-linear isomorphism
between the tangent bundle TM and the cotangent bundle T*M, with the inverse
Therefore, one-forms on a symplectic manifold M may be identified with vector fields and every differentiable function H: M → R determines a unique vector field XH, called the Hamiltonian vector field with the Hamiltonian H, by requiring that for every vector field Y on M, the identity
must hold.
Note: Some authors define the Hamiltonian vector field with the opposite sign. One has to be mindful of varying conventions in physical and mathematical literature.
Read more about this topic: Hamiltonian Vector Field
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)