Hamiltonian Mechanics - Relativistic Charged Particle in An Electromagnetic Field

Relativistic Charged Particle in An Electromagnetic Field

The Lagrangian for a relativistic charged particle is given by:

Thus the particle's canonical (total) momentum is

that is, the sum of the kinetic momentum and the potential momentum.

Solving for the velocity, we get

So the Hamiltonian is

From this we get the force equation (equivalent to the Euler–Lagrange equation)

from which one can derive

An equivalent expression for the Hamiltonian as function of the relativistic (kinetic) momentum, is

This has the advantage that can be measured experimentally whereas cannot. Notice that the Hamiltonian (total energy) can be viewed as the sum of the relativistic energy (kinetic+rest), plus the potential energy,

Read more about this topic:  Hamiltonian Mechanics

Famous quotes containing the words charged, particle and/or field:

    True and false are attributes of speech not of things. And where speech is not, there is neither truth nor falsehood. Error there may be, as when we expect that which shall not be; or suspect what has not been: but in neither case can a man be charged with untruth.
    Thomas Hobbes (1588–1679)

    Each particle is a microcosm, and faithfully renders the likeness of the world.
    Ralph Waldo Emerson (1803–1882)

    Yet, hermit and stoic as he was, he was really fond of sympathy, and threw himself heartily and childlike into the company of young people whom he loved, and whom he delighted to entertain, as he only could, with the varied and endless anecdotes of his experiences by field and river: and he was always ready to lead a huckleberry-party or a search for chestnuts and grapes.
    Ralph Waldo Emerson (1803–1882)