Hamiltonian Mechanics - Relativistic Charged Particle in An Electromagnetic Field

Relativistic Charged Particle in An Electromagnetic Field

The Lagrangian for a relativistic charged particle is given by:

Thus the particle's canonical (total) momentum is

that is, the sum of the kinetic momentum and the potential momentum.

Solving for the velocity, we get

So the Hamiltonian is

From this we get the force equation (equivalent to the Euler–Lagrange equation)

from which one can derive

An equivalent expression for the Hamiltonian as function of the relativistic (kinetic) momentum, is

This has the advantage that can be measured experimentally whereas cannot. Notice that the Hamiltonian (total energy) can be viewed as the sum of the relativistic energy (kinetic+rest), plus the potential energy,

Read more about this topic:  Hamiltonian Mechanics

Famous quotes containing the words charged, particle and/or field:

    I would I could
    Quit all offences with as clear excuse
    As well as I am doubtless I can purge
    Myself of many I am charged withal.
    William Shakespeare (1564–1616)

    Each particle is a microcosm, and faithfully renders the likeness of the world.
    Ralph Waldo Emerson (1803–1882)

    The little toy dog is covered with dust,
    But sturdy and stanch he stands;
    And the little toy soldier is red with rust,
    And the musket moulds in his hands.
    Time was when the little toy dog was new,
    And the soldier was passing fair;
    And that was the time when our Little Boy Blue
    Kissed them and put them there.
    —Eugene Field (1850–1895)