Discrete and Computational Geometry Versions
In discrete geometry and computational geometry, the ham sandwich theorem usually refers to the special case in which each of the sets being divided is a finite set of points. Here the relevant measure is the counting measure, which simply counts the number of points on either side of the hyperplane. In two dimensions, the theorem can be stated as follows:
- For a finite set of points in the plane, each colored "red" or "blue", there is a line that simultaneously bisects the red points and bisects the blue points, that is, the number of red points on either side of the line is equal and the number of blue points on either side of the line is equal.
There is an exceptional case when points lie on the line. In this situation, we count each of these points as either being on one side, on the other, or on neither side of the line (possibly depending on the point), i.e. "bisecting" in fact means that each side contains less than half of the total number of points. This exceptional case is actually required for the theorem to hold, of course when the number of red points or the number of blue is odd, but also in specific configurations with even numbers of points, for instance when all the points lie on the same line and the two colors are separated from each other (i.e. colors don't alternate along the line). A situation where the numbers of points on each side cannot match each other is provided by adding an extra point out of the line in the previous configuration.
In computational geometry, this ham sandwich theorem leads to a computational problem, the ham sandwich problem. In two dimensions, the problem is this: given a finite set of n points in the plane, each colored "red" or "blue", find a ham sandwich cut for them. First, Megiddo (1985) described an algorithm for the special, separated case. Here all red points are on one side of some line and all blue points are on the other side, a situation where there is a unique ham sandwich cut, which Megiddo could find in linear time. Later, Edelsbrunner & Waupotitsch (1986) gave an algorithm for the general two-dimensional case; the running time of their algorithm is O(n log n), where the symbol O indicates the use of Big O notation. Finally, Lo & Steiger (1990) found an optimal O(n)-time algorithm. This algorithm was extended to higher dimensions by Lo, Matoušek & Steiger (1994). Given d sets of points in general position in d-dimensional space, the algorithm computes a (d−1)-dimensional hyperplane that has equal numbers of points of each of the sets in each of its half-spaces, i.e., a ham-sandwich cut for the given points.
Read more about this topic: Ham Sandwich Theorem
Famous quotes containing the words discrete and, discrete, geometry and/or versions:
“We have good reason to believe that memories of early childhood do not persist in consciousness because of the absence or fragmentary character of language covering this period. Words serve as fixatives for mental images. . . . Even at the end of the second year of life when word tags exist for a number of objects in the childs life, these words are discrete and do not yet bind together the parts of an experience or organize them in a way that can produce a coherent memory.”
—Selma H. Fraiberg (20th century)
“We have good reason to believe that memories of early childhood do not persist in consciousness because of the absence or fragmentary character of language covering this period. Words serve as fixatives for mental images. . . . Even at the end of the second year of life when word tags exist for a number of objects in the childs life, these words are discrete and do not yet bind together the parts of an experience or organize them in a way that can produce a coherent memory.”
—Selma H. Fraiberg (20th century)
“I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.”
—Ralph Waldo Emerson (18031882)
“The assumption must be that those who can see value only in tradition, or versions of it, deny mans ability to adapt to changing circumstances.”
—Stephen Bayley (b. 1951)