Hall Subgroup - A Converse To Hall's Theorem

A Converse To Hall's Theorem

Any finite group that has a Hall π-subgroup for every set of primes π is solvable. This is a generalization of Burnside's theorem that any group whose order is of the form p aq b for primes p and q is solvable, because Sylow's theorem implies that all Hall subgroups exist. This does not (at present) give another proof of Burnside's theorem, because Burnside's theorem is used to prove this converse.

Read more about this topic:  Hall Subgroup

Famous quotes containing the words converse, hall and/or theorem:

    There is a plain distinction to be made betwixt pleasure and happiness. For tho’ there can be no happiness without pleasure—yet the converse of the proposition will not hold true.—We are so made, that from the common gratifications of our appetites, and the impressions of a thousand objects, we snatch the one, like a transient gleam, without being suffered to taste the other.
    Laurence Sterne (1713–1768)

    While there we heard the Indian fire his gun twice.... This sudden, loud, crashing noise in the still aisles of the forest, affected me like an insult to nature, or ill manners at any rate, as if you were to fire a gun in a hall or temple.
    Henry David Thoreau (1817–1862)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)