Hairy Ball Theorem - Higher Dimensions

Higher Dimensions

The connection with the Euler characteristic χ suggests the correct generalisation: the 2n-sphere has no non-vanishing vector field for n ≥ 1. The difference in even and odd dimension is that the Betti numbers of the m-sphere are 0 except in dimensions 0 and m. Therefore their alternating sum χ is 2 for m even, and 0 for m odd.

Read more about this topic:  Hairy Ball Theorem

Famous quotes containing the words higher and/or dimensions:

    For my part, I have no hesitation in saying that although the American woman never leaves her domestic sphere and is in some respects very dependent within it, nowhere does she enjoy a higher station . . . if anyone asks me what I think the chief cause of the extraordinary prosperity and growing power of this nation, I should answer that it is due to the superiority of their woman.
    Alexis de Tocqueville (1805–1859)

    Words are finite organs of the infinite mind. They cannot cover the dimensions of what is in truth. They break, chop, and impoverish it.
    Ralph Waldo Emerson (1803–1882)