Problem Formulation
First, the process has to be represented according to the following standard configuration:
The plant P has two inputs, the exogenous input w, that includes reference signal and disturbances, and the manipulated variables u. There are two outputs, the error signals z that we want to minimize, and the measured variables v, that we use to control the system. v is used in K to calculate the manipulated variable u. Notice that all these are generally vectors, whereas P and K are matrices.
In formulae, the system is:
It is therefore possible to express the dependency of z on w as:
Called the lower linear fractional transformation, is defined (the subscript comes from lower):
Therefore, the objective of control design is to find a controller such that is minimised according to the norm. The same definition applies to control design. The infinity norm of the transfer function matrix is defined as:
where is the maximum singular value of the matrix .
The achievable H∞ norm of the closed loop system is mainly given through the matrix D11 (when the system P is given in the form (A, B1, B2, C1, C2, D11, D12, D22, D21)). There are several ways to come to an H∞ controller:
- A Youla-Kucera parametrization of the closed loop often leads to very high-order controller.
- Riccati-based approaches solve 2 Riccati equations to find the controller, but require several simplifying assumptions.
- An optimization-based reformulation of the Riccati equation uses Linear matrix inequalities and requires fewer assumptions.
Read more about this topic: H-infinity Methods In Control Theory
Famous quotes containing the words problem and/or formulation:
“The general public is easy. You dont have to answer to anyone; and as long as you follow the rules of your profession, you neednt worry about the consequences. But the problem with the powerful and rich is that when they are sick, they really want their doctors to cure them.”
—Molière [Jean Baptiste Poquelin] (16221673)
“Art is an experience, not the formulation of a problem.”
—Lindsay Anderson (b. 1923)