Relations With Finite Simple Groups
Finite groups of Lie type were among the first groups to be considered in mathematics, after cyclic, symmetric and alternating groups, with the projective special linear groups over prime finite fields, PSL(2, p) being constructed by Évariste Galois in the 1830s. The systematic exploration of finite groups of Lie type started with Camille Jordan's theorem that the projective special linear group PSL(2, q) is simple for q ≠ 2, 3. This theorem generalizes to projective groups of higher dimensions and gives an important infinite family PSL(n, q) of finite simple groups. Other classical groups were studied by Leonard Dickson in the beginning of 20th century. In the 1950s Claude Chevalley realized that after an appropriate reformulation, many theorems about semisimple Lie groups admit analogues for algebraic groups over an arbitrary field k, leading to construction of what are now called Chevalley groups. Moreover, as in the case of compact simple Lie groups, the corresponding groups turned out to be almost simple as abstract groups (Tits simplicity theorem). Although it was known since 19th century that other finite simple groups exist (for example, Mathieu groups), gradually a belief formed that nearly all finite simple groups can be accounted for by appropriate extensions of Chevalley's construction, together with cyclic and alternating groups. Moreover, the exceptions, the sporadic groups, share many properties with the finite groups of Lie type, and in particular, can be constructed and characterized based on their geometry in the sense of Tits.
The belief has now become a theorem – the classification of finite simple groups. Inspection of the list of finite simple groups shows that groups of Lie type over a finite field include all the finite simple groups other than the cyclic groups, the alternating groups, the Tits group, and the 26 sporadic simple groups.
Read more about this topic: Group Of Lie Type
Famous quotes containing the words relations with, relations, finite, simple and/or groups:
“Society does not consist of individuals but expresses the sum of interrelations, the relations within which these individuals stand.”
—Karl Marx (18181883)
“The interest in life does not lie in what people do, nor even in their relations to each other, but largely in the power to communicate with a third party, antagonistic, enigmatic, yet perhaps persuadable, which one may call life in general.”
—Virginia Woolf (18821941)
“Are not all finite beings better pleased with motions relative than absolute?”
—Henry David Thoreau (18171862)
“Even the simple act that we call going to visit a person of our acquaintance is in part an intellectual act. We fill the physical appearance of the person we see with all the notions we have about him, and in the totality of our impressions about him, these notions play the most important role.”
—Marcel Proust (18711922)
“And seniors grow tomorrow
From the juniors today,
And even swimming groups can fade,
Games mistresses turn grey.”
—Philip Larkin (19221986)