Group Algebra - Von Neumann Algebras Associated To Groups

Von Neumann Algebras Associated To Groups

The group von Neumann algebra W*(G) of G is the enveloping von Neumann algebra of C*(G).

For a discrete group G, we can consider the Hilbert space l2(G) for which G is an orthonormal basis. Since G operates on l2(G) by permuting the basis vectors, we can identify the complex group ring CG with a subalgebra of the algebra of bounded operators on l2(G). The weak closure of this subalgebra, NG, is a von Neumann algebra.

The center of NG can be described in terms of those elements of G whose conjugacy class is finite. In particular, if the identity element of G is the only group element with that property (that is, G has the infinite conjugacy class property), the center of NG consists only of complex multiples of the identity.

NG is isomorphic to the hyperfinite type II1 factor if and only if G is countable, amenable, and has the infinite conjugacy class property.

Read more about this topic:  Group Algebra

Famous quotes containing the words von, neumann and/or groups:

    Artists have a double relationship towards nature: they are her master and her slave at the same time. They are her slave in so far as they must work with means of this world so as to be understood; her master in so far as they subject these means to their higher goals and make them subservient to them.
    —Johann Wolfgang Von Goethe (1749–1832)

    It means there are times when a mere scientist has gone as far as he can. When he must pause and observe respectfully while something infinitely greater assumes control.
    —Kurt Neumann (1906–1958)

    If we can learn ... to look at the ways in which various groups appropriate and use the mass-produced art of our culture ... we may well begin to understand that although the ideological power of contemporary cultural forms is enormous, indeed sometimes even frightening, that power is not yet all-pervasive, totally vigilant, or complete.
    Janice A. Radway (b. 1949)