Grothendieck's Relative Point of View

Grothendieck's relative point of view is a heuristic applied in certain abstract mathematical situations, with a rough meaning of taking for consideration families of 'objects' explicitly depending on parameters, as the basic field of study, rather than a single such object. It is named after Alexander Grothendieck, who made extensive use of it in treating foundational aspects of algebraic geometry. Outside that field, it has been influential particularly on category theory and categorical logic.

In the usual formulation, the language of category theory is applied, to describe the point of view as treating, not objects X of a given category C as such, but morphisms

f: XS

where S is a fixed object. This idea is made formal in the idea of the slice category of objects of C 'above' S. To move from one slice to another requires a base change; from a technical point of view base change becomes a major issue for the whole approach (see for example Beck–Chevalley conditions).

A base change 'along' a given morphism

g: TS

is typically given by the fiber product, producing an object over T from one over S. The 'fiber' terminology is significant: the underlying heuristic is that X over S is a family of fibers, one for each 'point' of S; the fiber product is then the family on T, which described by fibers is for each point of T the fiber at its image in S. This set-theoretic language is too naïve to fit the required context, certainly, from algebraic geometry. It combines, though, with the use of the Yoneda lemma to replace the 'point' idea with that of treating an object, such as S, as 'as good as' the representable functor it sets up.

The Grothendieck–Riemann–Roch theorem from about 1956 is usually cited as the key moment for the introduction of this circle of ideas. The more classical types of Riemann–Roch theorem are recovered in the case where S is a single point (i.e. the final object in the working category C). Using other S is a way to have versions of theorems 'with parameters', i.e. allowing for continuous variation, for which the 'frozen' version reduces the parameters to constants.

In other applications, this way of thinking has been used in topos theory, to clarify the role of set theory in foundational matters. Assuming that we don’t have a commitment to one 'set theory' (all toposes are in some sense equally set theories for some intuitionistic logic) it is possible to state everything relative to some given set theory which acts as a base topos.

Famous quotes containing the words point of view, relative, point and/or view:

    Parents who want a fresh point of view on their furniture are advised to drop down on all fours and accompany the nine or ten month old on his rounds. It is probably many years since you last studied the underside of a dining room chair. The ten month old will study this marvel with as much concentration and reverence as a tourist in the Cathedral of Chartres.
    Selma H. Fraiberg (20th century)

    In a country where misery and want were the foundation of the social structure, famine was periodic, death from starvation common, disease pervasive, thievery normal, and graft and corruption taken for granted, the elimination of these conditions in Communist China is so striking that negative aspects of the new rule fade in relative importance.
    Barbara Tuchman (1912–1989)

    The striking point about our model family is not simply the compete-compete, consume-consume style of life it urges us to follow.... The striking point, in the face of all the propaganda, is how few Americans actually live this way.
    Louise Kapp Howe (b. 1934)

    If we view our children as stupid, naughty, disturbed, or guilty of their misdeeds, they will learn to behold themselves as foolish, faulty, or shameful specimens of humanity. They will regard us as judges from whom they wish to hide, and they will interpret everything we say as further proof of their unworthiness. If we view them as innocent, or at least merely ignorant, they will gain understanding from their experiences, and they will continue to regard us as wise partners.
    Polly Berrien Berends (20th century)