Potential Energy
The gravitational potential (V) is the potential energy (U) per unit mass:
where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity. If the body has a mass of 1 unit, then the potential energy to be assigned to that body is equal to the gravitational potential. So the potential can be interpreted as the negative of the work done by the gravitational field moving a unit mass in from infinity.
In some situations, the equations can be simplified by assuming a field that is nearly independent of position. For instance, in daily life, in the region close to the surface of the Earth, the gravitational acceleration can be considered constant. In that case, the difference in potential energy from one height to another is to a good approximation linearly related to the difference in height:
Read more about this topic: Gravitational Potential
Famous quotes containing the words potential and/or energy:
“There is a potential 4-6 percentage point net gain for the President [George Bush] by replacing Dan Quayle on the ticket with someone of neutral stature.”
—Mary Matalin, U.S. Republican political advisor, author, and James Carville b. 1946, U.S. Democratic political advisor, author. Alls Fair: Love, War, and Running for President, p. 205, Random House (1994)
“The very presence of guilt, let alone its tenacity, implies imbalance: Something, we suspect, is getting more of our energy than warrants, at the expense of something else, we suspect, that deserves more of our energy than were giving.”
—Melinda M. Marshall (20th century)