Solution of A Non-linear System
Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three unknown variables, x1, x2, and x3. This example shows one iteration of the gradient descent.
Consider a nonlinear system of equations:
suppose we have the function
where
and the objective function
With initial guess
We know that
where
The Jacobian matrix
Then evaluating these terms at
and
So that
and
Now a suitable must be found such that . This can be done with any of a variety of line search algorithms. One might also simply guess which gives
evaluating at this value,
The decrease from to the next step's value of is a sizable decrease in the objective function. Further steps would reduce its value until a solution to the system was found.
Read more about this topic: Gradient Descent
Famous quotes containing the words solution of, solution and/or system:
“The truth of the thoughts that are here set forth seems to me unassailable and definitive. I therefore believe myself to have found, on all essential points, the final solution of the problems. And if I am not mistaken in this belief, then the second thing in which the value of this work consists is that it shows how little is achieved when these problems are solved.”
—Ludwig Wittgenstein (18891951)
“All the followers of science are fully persuaded that the processes of investigation, if only pushed far enough, will give one certain solution to each question to which they can be applied.... This great law is embodied in the conception of truth and reality. The opinion which is fated to be ultimately agreed to by all who investigate is what we mean by the truth, and the object represented in this opinion is the real.”
—Charles Sanders Peirce (18391914)
“The violent illiteracies of the graffiti, the clenched silence of the adolescent, the nonsense cries from the stage-happening, are resolutely strategic. The insurgent and the freak-out have broken off discourse with a cultural system which they despise as a cruel, antiquated fraud. They will not bandy words with it. Accept, even momentarily, the conventions of literate linguistic exchange, and you are caught in the net of the old values, of the grammars that can condescend or enslave.”
—George Steiner (b. 1929)










