Givens Rotation - Stable Calculation

Stable Calculation

When a Givens rotation matrix, G(i,j,θ), multiplies another matrix, A, from the left, GA, only rows i and j of A are affected. Thus we restrict attention to the following problem. Given a and b, find c = cos θ and s = sin θ such that

Explicit calculation of θ is rarely necessary or desirable. Instead we directly seek c, s, and r. An obvious solution would be

\begin{align} r &{}\larr \sqrt{a^2 + b^2} \\ c &{}\larr a / r \\ s &{}\larr -b / r.
\end{align}

However, the computation for r may overflow or underflow. An alternative formulation avoiding this problem (Golub & Van Loan 1996, §5.1.8) is implemented as the hypot function in many programming languages .

Furthermore, as Anderson (2000) discovered in improving LAPACK, a previously overlooked numerical consideration is continuity. To achieve this, we require r to be positive.

if (b = 0) then {c ← copysign(1,a); s ← 0; r ← abs(a)} else if (a = 0) then {c ← 0; s ← -copysign(1,b); r ← abs(b)} else if (abs(b) > abs(a)) then t ← a/b u ← copysign(sqrt(1+t*t),b) s ← -1/u c ← -s*t r ← b*u else t ← b/a u ← copysign(sqrt(1+t*t),a) c ← 1/u s ← -c*t r ← a*u

This is written in terms of the IEEE 754 copysign(x,y) function, which provides a safe and cheap way to copy the sign of y to x. If that is not available, x*sgn(y), using the sign function, is an alternative.

Read more about this topic:  Givens Rotation

Famous quotes containing the words stable and/or calculation:

    If, then, this civilization is to be saved, if it is not to be submerged by centuries of barbarism, but to secure the treasures of its inheritance on new and more stable foundations, there is indeed need for those now living fully to realize how far the decay has already progressed.
    Johan Huizinga (1872–1945)

    Common sense is the measure of the possible; it is composed of experience and prevision; it is calculation appled to life.
    Henri-Frédéric Amiel (1821–1881)