Description
The Gibbs phenomenon involves both the fact that Fourier sums overshoot at a jump discontinuity, and that this overshoot does not die out as the frequency increases.
The three pictures on the right demonstrate the phenomenon for a square wave (of height ) whose Fourier expansion is
More precisely, this is the function f which equals between and and between and for every integer n; thus this square wave has a jump discontinuity of height at every integer multiple of .
As can be seen, as the number of terms rises, the error of the approximation is reduced in width and energy, but converges to a fixed height. A calculation for the square wave (see Zygmund, chap. 8.5., or the computations at the end of this article) gives an explicit formula for the limit of the height of the error. It turns out that the Fourier series exceeds the height of the square wave by
or about 9 percent. More generally, at any jump point of a piecewise continuously differentiable function with a jump of a, the nth partial Fourier series will (for n very large) overshoot this jump by approximately at one end and undershoot it by the same amount at the other end; thus the "jump" in the partial Fourier series will be about 18% larger than the jump in the original function. At the location of the discontinuity itself, the partial Fourier series will converge to the midpoint of the jump (regardless of what the actual value of the original function is at this point). The quantity
is sometimes known as the Wilbraham–Gibbs constant.
Read more about this topic: Gibbs Phenomenon
Famous quotes containing the word description:
“The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St. Pauls, like the editions of Balbec and Palmyra.”
—Horace Walpole (17171797)
“Whose are the truly labored sentences? From the weak and flimsy periods of the politician and literary man, we are glad to turn even to the description of work, the simple record of the months labor in the farmers almanac, to restore our tone and spirits.”
—Henry David Thoreau (18171862)
“Once a child has demonstrated his capacity for independent functioning in any area, his lapses into dependent behavior, even though temporary, make the mother feel that she is being taken advantage of....What only yesterday was a description of the childs stage in life has become an indictment, a judgment.”
—Elaine Heffner (20th century)