Geophysical MASINT - Vibration MASINT

Vibration MASINT

This subdiscipline is also called piezoelectric MASINT after the sensor most often used to sense vibration, but vibration detectors need not be piezoelectric. Note that some discussions treat seismic and vibration sensors as a subset of acoustic MASINT. Other possible detectors could be moving coil or surface acoustic wave. . Vibration, as a form of geophysical energy to be sensed, has similarities to acoustic and seismic MASINT, but also has distinct differences that make it useful, especially in unattended ground sensors (UGS). In the UGS application, one advantage of a piezoelectric sensor is that it generates electricity when triggered, rather than consuming electricity, an important consideration for remote sensors whose lifetime may be determined by their battery capacity.

While acoustic signals at sea travel through water, on land, they can be assumed to come through the air. Vibration, however, is conducted through a solid medium on land. It has a higher frequency than is typical of seismic conducted signals.

A typical detector, the Thales MA2772 vibration is a piezoelectric cable, shallowly buried below the ground surface, and extended for 750 meters. Two variants are available, a high-sensitivity version for personnel detection, and lower-sensitivity version to detect vehicles. Using two or more sensors will determine the direction of travel, from the sequence in which the sensors trigger.

In addition to being buried, piezoelectric vibration detectors, in a cable form factor, also are used as part of high-security fencing. They can be embedded in walls or other structures that need protection.

Read more about this topic:  Geophysical MASINT

Famous quotes containing the word vibration:

    All sound heard at the greatest possible distance produces one and the same effect, a vibration of the universal lyre, just as the intervening atmosphere makes a distant ridge of earth interesting to our eyes by the azure tint it imparts to it.
    Henry David Thoreau (1817–1862)