Geometrical Frustration - Mathematical Definition

Mathematical Definition

The mathematical definition is simple (and analogous to the so-called Wilson loop in Quantum chromodynamics): One considers for example expressions ("total energies" or "Hamiltonians") of the form

where G is the graph considered, whereas the quantities are the so-called „exchange energies“ between nearest-neighbours, which (in the energy units considered) assume the values (mathematically, this is a signed graph), while the are inner products of scalar or vectorial spins or pseudo-spins. If the graph G has quadratic or triangular faces P, the so-called "plaquette variables", "loop-products" of the following kind, appear:

resp.

which are also called "frustration products“. One has to perform a sum over these products, summed over all plaquettes. The result for a single plaquette is either +1 or -1. In the last-mentioned case the plaquette is "geometrically frustrated".

It can be shown that the result has a simple gauge invariance: it does not change – nor do other measurable quantities, e.g. the "total energy" – even if locally the exchange integrals and the spins are simultaneously modified as follows:

Here the numbers und

are arbitrary signs, i.e. = +1 or = −1, so that the modified structure may look totally random.

Read more about this topic:  Geometrical Frustration

Famous quotes containing the words mathematical and/or definition:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)