General Linear Model

The general linear model (GLM) is a statistical linear model. It may be written as

where Y is a matrix with series of multivariate measurements, X is a matrix that might be a design matrix, B is a matrix containing parameters that are usually to be estimated and U is a matrix containing errors or noise. The errors are usually assumed to follow a multivariate normal distribution. If the errors do not follow a multivariate normal distribution, generalized linear models may be used to relax assumptions about Y and U.

The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of multiple linear regression model to the case of more than one dependent variable. If Y, B, and U were column vectors, the matrix equation above would represent multiple linear regression.

Hypothesis tests with the general linear model can be made in two ways: multivariate or as several independent univariate tests. In multivariate tests the columns of Y are tested together, whereas in univariate tests the columns of Y are tested independently, i.e., as multiple univariate tests with the same design matrix.

Read more about General Linear Model:  Multiple Linear Regression, Applications

Famous quotes containing the words general and/or model:

    That sort of half sigh, which, accompanied by two or three slight nods of the head, is pity’s small change in general society.
    Charles Dickens (1812–1870)

    The best way to teach a child restraint and generosity is to be a model of those qualities yourself. If your child sees that you want a particular item but refrain from buying it, either because it isn’t practical or because you can’t afford it, he will begin to understand restraint. Likewise, if you donate books or clothing to charity, take him with you to distribute the items to teach him about generosity.
    Lawrence Balter (20th century)