General Linear Group - Infinite General Linear Group

The infinite general linear group or stable general linear group is the direct limit of the inclusions GL(n,F) → GL(n+1,F) as the upper left block matrix. It is denoted by either GL(F) or GL(∞,F), and can also be interpreted as invertible infinite matrices which differ from the identity matrix in only finitely many places.

It is used in algebraic K-theory to define K1, and over the reals has a well-understood topology, thanks to Bott periodicity.

It should not be confused with the space of (bounded) invertible operators on a Hilbert space, which is a larger group, and topologically much simpler, namely contractible — see Kuiper's theorem.

Read more about this topic:  General Linear Group

Famous quotes containing the words infinite, general and/or group:

    The nonchalance and dolce-far-niente air of nature and society hint at infinite periods in the progress of mankind.
    Henry David Thoreau (1817–1862)

    Pleasure is necessarily reciprocal; no one feels it who does not at the same time give it. To be pleased, one must please. What pleases you in others, will in general please them in you.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    It’s important to remember that feminism is no longer a group of organizations or leaders. It’s the expectations that parents have for their daughters, and their sons, too. It’s the way we talk about and treat one another. It’s who makes the money and who makes the compromises and who makes the dinner. It’s a state of mind. It’s the way we live now.
    Anna Quindlen (20th century)