Higher Powers
Generalizations of Gauss's lemma can be used to compute higher power residue symbols. In his second monograph on biquadratic reciprocity, Gauss used a fourth-power lemma to derive the formula for the biquadratic character of 1 + i in Z, the ring of Gaussian integers. Subsequently, Eisenstein used third- and fourth-power versions to prove cubic and quartic reciprocity.
Read more about this topic: Gauss's Lemma (number Theory)
Famous quotes containing the words higher and/or powers:
“We are conscious of an animal in us, which awakens in proportion as our higher nature slumbers. It is reptile and sensual, and perhaps cannot be wholly expelled; like the worms which, even in life and health, occupy our bodies. Possibly we may withdraw from it, but never change its nature. I fear that it may enjoy a certain health of its own; that we may be well, yet not pure.”
—Henry David Thoreau (18171862)
“Whenever any form of government shall become destructive of these ends, it is the right of the people to alter or to abolish it, & to institute new government, laying its foundation on such principles & organising its powers in such form, as to them shall seem most likely to effect their safety & happiness.”
—Thomas Jefferson (17431826)