Galois Theory - Application To Classical Problems

Application To Classical Problems

The birth of Galois theory was originally motivated by the following question, whose answer is known as the Abel–Ruffini theorem.

Why is there no formula for the roots of a fifth (or higher) degree polynomial equation in terms of the coefficients of the polynomial, using only the usual algebraic operations (addition, subtraction, multiplication, division) and application of radicals (square roots, cube roots, etc)?

Galois theory not only provides a beautiful answer to this question, it also explains in detail why it is possible to solve equations of degree four or lower in the above manner, and why their solutions take the form that they do. Further, it gives a conceptually clear, and often practical, means of telling when some particular equation of higher degree can be solved in that manner.

Galois theory also gives a clear insight into questions concerning problems in compass and straightedge construction. It gives an elegant characterisation of the ratios of lengths that can be constructed with this method. Using this, it becomes relatively easy to answer such classical problems of geometry as

Which regular polygons are constructible polygons?
Why is it not possible to trisect every angle using a compass and straightedge?

Read more about this topic:  Galois Theory

Famous quotes containing the words application to, application, classical and/or problems:

    “Five o’clock tea” is a phrase our “rude forefathers,” even of the last generation, would scarcely have understood, so completely is it a thing of to-day; and yet, so rapid is the March of the Mind, it has already risen into a national institution, and rivals, in its universal application to all ranks and ages, and as a specific for “all the ills that flesh is heir to,” the glorious Magna Charta.
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bête noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!
    Albert Einstein (1879–1955)

    The basic difference between classical music and jazz is that in the former the music is always greater than its performance—Beethoven’s Violin Concerto, for instance, is always greater than its performance—whereas the way jazz is performed is always more important than what is being performed.
    André Previn (b. 1929)

    Grandparents can be role models about areas that may not be significant to young children directly but that can teach them about patience and courage when we are ill, or handicapped by problems of aging. Our attitudes toward retirement, marriage, recreation, even our feelings about death and dying may make much more of an impression than we realize.
    Eda Le Shan (20th century)