Relation To Mutual Information
For analysis of contingency tables the value of G can also be expressed in terms of mutual information.
Let
- , and
Then G can be expressed in several alternative forms:
where the entropy of a discrete random variable is defined as
and where
is the mutual information between the row vector and the column vector of the contingency table.
It can also be shown that the inverse document frequency weighting commonly used for text retrieval is an approximation of G applicable when the row sum for the query is much smaller than the row sum for the remainder of the corpus. Similarly, the result of Bayesian inference applied to a choice of single multinomial distribution for all rows of the contingency table taken together versus the more general alternative of a separate multinomial per row produces results very similar to the G statistic.
Read more about this topic: G-test
Famous quotes containing the words relation to, relation, mutual and/or information:
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—HonorĂ© De Balzac (17991850)
“Parents ought, through their own behavior and the values by which they live, to provide direction for their children. But they need to rid themselves of the idea that there are surefire methods which, when well applied, will produce certain predictable results. Whatever we do with and for our children ought to flow from our understanding of and our feelings for the particular situation and the relation we wish to exist between us and our child.”
—Bruno Bettelheim (20th century)
“Rules and particular inferences alike are justified by being brought into agreement with each other. A rule is amended if it yields an inference we are unwilling to accept; an inference is rejected if it violates a rule we are unwilling to amend. The process of justification is the delicate one of making mutual adjustments between rules and accepted inferences; and in the agreement achieved lies the only justification needed for either.”
—Nelson Goodman (b. 1906)
“So while it is true that children are exposed to more information and a greater variety of experiences than were children of the past, it does not follow that they automatically become more sophisticated. We always know much more than we understand, and with the torrent of information to which young people are exposed, the gap between knowing and understanding, between experience and learning, has become even greater than it was in the past.”
—David Elkind (20th century)