Fundamental Theorem of Calculus - Proof of The Corollary

Proof of The Corollary

Suppose F is an antiderivative of f, with f continuous on . Let

.

By the first part of the theorem, we know G is also an antiderivative of f. It follows by the mean value theorem that there is a number c such that G(x) = F(x) + c, for all x in . Letting x = a, we have

which means c = − F(a). In other words G(x) = F(x) − F(a), and so

Read more about this topic:  Fundamental Theorem Of Calculus

Famous quotes containing the words proof of the, proof of and/or proof:

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    When children feel good about themselves, it’s like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.
    Stephanie Martson (20th century)

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)