In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 is either prime itself or is the product of prime numbers, and that, although the order of the primes in the second case is arbitrary, the primes themselves are not. For example,
The theorem is stating two things: first, that 1200 can be represented as a product of primes, and second, no matter how this is done, there will always be four 2s, one 3, two 5s, and no other primes in the product.
Read more about Fundamental Theorem Of Arithmetic: History, Proof, Generalizations
Famous quotes containing the words fundamental, theorem and/or arithmetic:
“Le Corbusier was the sort of relentlessly rational intellectual that only France loves wholeheartedly, the logician who flies higher and higher in ever-decreasing circles until, with one last, utterly inevitable induction, he disappears up his own fundamental aperture and emerges in the fourth dimension as a needle-thin umber bird.”
—Tom Wolfe (b. 1931)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“O! O! another stroke! that makes the third.
He stabs me to the heart against my wish.
If that be so, thy state of health is poor;
But thine arithmetic is quite correct.”
—A.E. (Alfred Edward)