In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 is either prime itself or is the product of prime numbers, and that, although the order of the primes in the second case is arbitrary, the primes themselves are not. For example,
The theorem is stating two things: first, that 1200 can be represented as a product of primes, and second, no matter how this is done, there will always be four 2s, one 3, two 5s, and no other primes in the product.
Read more about Fundamental Theorem Of Arithmetic: History, Proof, Generalizations
Famous quotes containing the words fundamental, theorem and/or arithmetic:
“We are told to maintain constitutions because they are constitutions, and what is laid down in those constitutions?... Certain great fundamental ideas of right are common to the world, and ... all laws of mans making which trample on these ideas, are null and voidwrong to obey, right to disobey. The Constitution of the United States recognizes human slavery; and makes the souls of men articles of purchase and of sale.”
—Anna Elizabeth Dickinson (18421932)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.”
—Gottlob Frege (18481925)