Relationship To First Homology Group
The fundamental groups of a topological space X are related to its first singular homology group, because a loop is also a singular 1-cycle. Mapping the homotopy class of each loop at a base point x0 to the homology class of the loop gives a homomorphism from the fundamental group π1(X, x0) to the homology group H1(X). If X is path-connected, then this homomorphism is surjective and its kernel is the commutator subgroup of π1(X, x0), and H1(X) is therefore isomorphic to the abelianization of π1(X, x0). This is a special case of the Hurewicz theorem of algebraic topology.
Read more about this topic: Fundamental Group
Famous quotes containing the words relationship to, relationship and/or group:
“Whatever may be our just grievances in the southern states, it is fitting that we acknowledge that, considering their poverty and past relationship to the Negro race, they have done remarkably well for the cause of education among us. That the whole South should commit itself to the principle that the colored people have a right to be educated is an immense acquisition to the cause of popular education.”
—Fannie Barrier Williams (18551944)
“I began to expand my personal service in the church, and to search more diligently for a closer relationship with God among my different business, professional and political interests.”
—Jimmy Carter (James Earl Carter, Jr.)
“Stripped of ethical rationalizations and philosophical pretensions, a crime is anything that a group in power chooses to prohibit.”
—Freda Adler (b. 1934)