Functor Category - Definition

Definition

Suppose C is a small category (i.e. the objects and morphisms form a set rather than a proper class) and D is an arbitrary category. The category of functors from C to D, written as Fun(C, D), Funct(C,D) or DC, has as objects the covariant functors from C to D, and as morphisms the natural transformations between such functors. Note that natural transformations can be composed: if μ(X) : F(X) → G(X) is a natural transformation from the functor F : CD to the functor G : CD, and η(X) : G(X) → H(X) is a natural transformation from the functor G to the functor H, then the collection η(X)μ(X) : F(X) → H(X) defines a natural transformation from F to H. With this composition of natural transformations (known as vertical composition, see natural transformation), DC satisfies the axioms of a category.

In a completely analogous way, one can also consider the category of all contravariant functors from C to D; we write this as Funct(Cop,D).

If C and D are both preadditive categories (i.e. their morphism sets are abelian groups and the composition of morphisms is bilinear), then we can consider the category of all additive functors from C to D, denoted by Add(C,D).

Read more about this topic:  Functor Category

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)