Solution Around Infinity
Finally, we study the singularity as x → ∞. Since we can't study this directly, we let x = s−1. Then the solution of the equation as x → ∞ is identical to the solution of the modified equation when s = 0. We had
Hence, the equation takes the new form
which reduces to
Let
As we said, we shall only study the solution when s = 0. As we can see, this is a singular point since P2(0) = 0. To see if it's regular,
Hence, both limits exist and s = 0 is a regular singular point. Therefore, we assume the solution takes the form
with a0 ≠ 0.
Hence,
Substituting in the modified hypergeometric equation we get
And therefore:
i.e.,
In order to simplify this equation, we need all powers to be the same, equal to r + c, the smallest power. Hence, we switch the indices as follows
Thus, isolating the first term of the sums starting from 0 we get
Now, from the linear independence of all powers of s (i.e., of the functions 1, s, s2, ...), the coefficients of sk vanish for all k. Hence, from the first term we have
which is the indicial equation. Since a0 ≠ 0, we have
Hence, c1 = α and c2 = β.
Also, from the rest of the terms we have
Hence,
But
Hence, we get the recurrence relation
Let's now simplify this relation by giving ar in terms of a0 instead of ar−1. From the recurrence relation,
As we can see,
Hence, our assumed solution takes the form
We are now ready to study the solutions corresponding to the different cases for c1 − c2 = α − β.
Read more about this topic: Frobenius Solution To The Hypergeometric Equation
Famous quotes containing the words solution and/or infinity:
“There is a lot of talk now about metal detectors and gun control. Both are good things. But they are no more a solution than forks and spoons are a solution to world hunger.”
—Anna Quindlen (b. 1953)
“As we begin to comprehend that the earth itself is a kind of manned spaceship hurtling through the infinity of spaceit will seem increasingly absurd that we have not better organized the life of the human family.”
—Hubert H. Humphrey (19111978)