Frobenius Solution To The Hypergeometric Equation

Frobenius Solution To The Hypergeometric Equation

In the following we solve the second-order differential equation called the hypergeometric differential equation using Frobenius method, named after Ferdinand Georg Frobenius. This is a method that uses the series solution for a differential equation, where we assume the solution takes the form of a series. This is usually the method we use for complicated ordinary differential equations.

The solution of the hypergeometric differential equation is very important. For instance, Legendre's differential equation can be shown to be a special case of the hypergeometric differential equation. Hence, by solving the hypergeometric differential equation, one may directly compare its solutions to get the solutions of Legendre's differential equation, after making the necessary substitutions. For more details, please check the hypergeometric differential equation.

We shall prove that this equation has three singularities, namely at x = 0, x = 1 and around infinity. However, as these will turn out to be regular singular points, we will be able to assume a solution on the form of a series. Since this is a second-order differential equation, we must have two linearly independent solutions.

The problem however will be that our assumed solutions may or not be independent, or worse, may not even be defined (depending on the value of the parameters of the equation). This is why we shall study the different cases for the parameters and modify our assumed solution accordingly.

Read more about Frobenius Solution To The Hypergeometric Equation:  The Equation, Solution Around x = 0, Solution Around x = 1, Solution Around Infinity

Famous quotes containing the words solution and/or equation:

    Who shall forbid a wise skepticism, seeing that there is no practical question on which any thing more than an approximate solution can be had? Is not marriage an open question, when it is alleged, from the beginning of the world, that such as are in the institution wish to get out, and such as are out wish to get in?
    Ralph Waldo Emerson (1803–1882)

    Jail sentences have many functions, but one is surely to send a message about what our society abhors and what it values. This week, the equation was twofold: female infidelity twice as bad as male abuse, the life of a woman half as valuable as that of a man. The killing of the woman taken in adultery has a long history and survives today in many cultures. One of those is our own.
    Anna Quindlen (b. 1952)