Friendly Number
In number theory, friendly numbers are two or more natural numbers with a common abundancy, the ratio between the sum of divisors of a number and the number itself. Two numbers with the same abundancy form a friendly pair; n numbers with the same abundancy form a friendly n-tuple.
Being mutually friendly is an equivalence relation, and thus induces a partition of the positive naturals into clubs (equivalence classes) of mutually friendly numbers.
A number that is not part of any friendly pair is called solitary.
The abundancy of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists m ≠ n such that σ(m) / m = σ(n) / n. Note that abundancy is not the same as abundance which is defined as σ(n) − 2n.
Abundancy may also be expressed as where denotes a divisor function with equal to the sum of the k-th powers of the divisors of n.
The numbers 1 through 5 are all solitary. The smallest friendly number is 6, forming for example the friendly pair (6, 28) with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14+28) / 28 = 2. The shared value 2 is an integer in this case but not in many other cases. There are several unsolved problems related to the friendly numbers.
In spite of the similarity in name, there is no specific relationship between the friendly numbers and the amicable numbers or the sociable numbers, although the definitions of the latter two also involve the divisor function.
Read more about Friendly Number: Example, Solitary Numbers, Large Clubs
Famous quotes containing the words friendly and/or number:
“Friendship is a pretty full-time occupation if you really are friendly with somebody. You cant have too many friends because then youre just not really friends.”
—Truman Capote (19241984)
“Even in ordinary speech we call a person unreasonable whose outlook is narrow, who is conscious of one thing only at a time, and who is consequently the prey of his own caprice, whilst we describe a person as reasonable whose outlook is comprehensive, who is capable of looking at more than one side of a question and of grasping a number of details as parts of a whole.”
—G. Dawes Hicks (18621941)