Freiling's Axiom of Symmetry - Connection To Graph Theory

Connection To Graph Theory

Using the fact that in ZFC, we have (see above), it is not hard to see that the failure of the axiom of symmetry — and thus the success of — is equivalent to the following combinatorial principle for graphs:

  • The complete graph on can be so directed, that every node leads to at most -many nodes.
  • In the case of, this translates to: The complete graph on the unit circle can be so directed, that every node leads to at most countably-many nodes.

Thus in the context of ZFC, the failure of a Freiling axiom is equivalent to the existence of a specific kind of choice function.

Read more about this topic:  Freiling's Axiom Of Symmetry

Famous quotes containing the words connection to, connection, graph and/or theory:

    It may comfort you to know that if your child reaches the age of eleven or twelve and you have a good bond or relationship, no matter how dramatic adolescence becomes, you children will probably turn out all right and want some form of connection to you in adulthood.
    Charlotte Davis Kasl (20th century)

    Children of the same family, the same blood, with the same first associations and habits, have some means of enjoyment in their power, which no subsequent connections can supply; and it must be by a long and unnatural estrangement, by a divorce which no subsequent connection can justify, if such precious remains of the earliest attachments are ever entirely outlived.
    Jane Austen (1775–1817)

    When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.
    Marshall McLuhan (1911–1980)

    It is not enough for theory to describe and analyse, it must itself be an event in the universe it describes. In order to do this theory must partake of and become the acceleration of this logic. It must tear itself from all referents and take pride only in the future. Theory must operate on time at the cost of a deliberate distortion of present reality.
    Jean Baudrillard (b. 1929)