Free Object - Free Functor

The most general setting for a free object is in category theory, where one defines a functor, the free functor, that is the left adjoint to the forgetful functor.

Consider the category C of algebraic structures; these can be thought of as sets plus operations, obeying some laws. This category has a functor, the forgetful functor, which maps objects and functions in C to Set, the category of sets. The forgetful functor is very simple: it just ignores all of the operations.

The free functor F, when it exists, is the left adjoint to U. That is, takes sets X in Set to their corresponding free objects F(X) in the category C. The set X can be thought of as the set of "generators" of the free object F(X).

For the free functor to be a left adjoint, one must also have a Set-morphism . More explicitly, F is, up to isomorphisms in C, characterized by the following universal property:

Whenever A is an algebra in C, and g: XU(A) is a function (a morphism in the category of sets), then there is a unique C-morphism h: F(X)→A such that U(h)oη = g.

Concretely, this sends a set into the free object on that set; it's the "inclusion of a basis". Abusing notation, (this abuses notation because X is a set, while F(X) is an algebra; correctly, it is ).

The natural transformation is called the unit; together with the counit, one may construct a T-algebra, and so a monad. This leads to the next topic: free functors exist when C is a monad over Set.

Read more about this topic:  Free Object

Famous quotes containing the word free:

    Poor shad! where is thy redress? When Nature gave thee instinct, gave she thee the heart to bear thy fate? Still wandering the sea in thy scaly armor to inquire humbly at the mouths of rivers if man has perchance left them free for thee to enter.
    Henry David Thoreau (1817–1862)