Definition
Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function u : E1 → E2 between vector spaces is entirely determined by its values on a basis of the vector space E1. Conversely, a function u : E1 → E2 defined on a basis of E1 can be uniquely extended to a linear function. The following definition translates this to any category.
Let (C,F) be a concrete category (i.e. F: C → Set is a faithful functor), let X be a set (called basis), A ∈ C an object, and i: X → F(A) a map between sets (called canonical injection). We say that A is the free object on X (with respect to i) if and only if they satisfy this universal property:
- for any object B and any map between sets f: X → F(B), there exists a unique morphism such that . That is, the following diagram commutes:
This way the free functor that builds the free object A from the set X becomes left adjoint to the forgetful functor.
Read more about this topic: Free Object
Famous quotes containing the word definition:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)