Definition
Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function u : E1 → E2 between vector spaces is entirely determined by its values on a basis of the vector space E1. Conversely, a function u : E1 → E2 defined on a basis of E1 can be uniquely extended to a linear function. The following definition translates this to any category.
Let (C,F) be a concrete category (i.e. F: C → Set is a faithful functor), let X be a set (called basis), A ∈ C an object, and i: X → F(A) a map between sets (called canonical injection). We say that A is the free object on X (with respect to i) if and only if they satisfy this universal property:
- for any object B and any map between sets f: X → F(B), there exists a unique morphism such that . That is, the following diagram commutes:
This way the free functor that builds the free object A from the set X becomes left adjoint to the forgetful functor.
Read more about this topic: Free Object
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)