Fractional Calculus - Fractional Derivative of A Basic Power Function

Fractional Derivative of A Basic Power Function

Let us assume that is a monomial of the form

The first derivative is as usual

Repeating this gives the more general result that

Which, after replacing the factorials with the Gamma function, leads us to

For and, we obtain the half-derivative of the function as

 \dfrac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}}x=\dfrac{\Gamma(1+1)}{\Gamma(1-\frac{1}{2}+1)}x^{1-\frac{1}{2}}=\dfrac{1!}{\Gamma(\frac{3}{2})}x^{\frac{1}{2}} =
\dfrac{2x^{\frac{1}{2}}}{\sqrt{\pi}}.

Repeating this process yields

which is indeed the expected result of

This extension of the above differential operator need not be constrained only to real powers. For example, the th derivative of the th derivative yields the 2nd derivative. Also notice that setting negative values for a yields integrals.

For a general function and, the complete fractional derivative is

For arbitrary, since the gamma function is undefined for arguments whose real part is a negative integer, it is necessary to apply the fractional derivative after the integer derivative has been performed. For example,

Read more about this topic:  Fractional Calculus

Famous quotes containing the words fractional, derivative, basic, power and/or function:

    Hummingbird
    stay for a fractional sharp
    sweetness, and’s gone, can’t take
    more than that.
    Denise Levertov (b. 1923)

    When we say “science” we can either mean any manipulation of the inventive and organizing power of the human intellect: or we can mean such an extremely different thing as the religion of science the vulgarized derivative from this pure activity manipulated by a sort of priestcraft into a great religious and political weapon.
    Wyndham Lewis (1882–1957)

    What, then, is the basic difference between today’s computer and an intelligent being? It is that the computer can be made to see but not to perceive. What matters here is not that the computer is without consciousness but that thus far it is incapable of the spontaneous grasp of pattern—a capacity essential to perception and intelligence.
    Rudolf Arnheim (b. 1904)

    Genius as an explosive power beats gunpowder hollow; and if knowledge, which should give that power guidance, is wanting, the chances are not small that the rocket will simply run amuck among friends and foes.
    Thomas Henry Huxley (1825–95)

    Advocating the mere tolerance of difference between women is the grossest reformism. It is a total denial of the creative function of difference in our lives. Difference must be not merely tolerated, but seen as a fund of necessary polarities between which our creativity can spark like a dialectic.
    Audre Lorde (1934–1992)