Fourier Optics - The Plane Wave Spectrum: The Foundation of Fourier Optics

The Plane Wave Spectrum: The Foundation of Fourier Optics

Fourier optics is somewhat different from ordinary ray optics typically used in the analysis and design of focused imaging systems such as cameras, telescopes and microscopes. Ray optics is the very first type of optics most of us encounter in our lives; it's simple to conceptualize and understand, and works very well in gaining a baseline understanding of common optical devices. Unfortunately, ray optics does not explain the operation of Fourier optical systems, which are in general not focused systems. Ray optics is a subset of wave optics (in the jargon, it is "the asymptotic zero-wavelength limit" of wave optics) and therefore has limited applicability. We have to know when it is valid and when it is not - and this is one of those times when it is not. For our current task, we must expand our understanding of optical phenomena to encompass wave optics, in which the optical field is seen as a solution to Maxwell's equations. This more general wave optics accurately explains the operation of Fourier optics devices.

In this section, we won't go all the way back to Maxwell's equations, but will start instead with the homogeneous Helmholtz equation (valid in source-free media), which is one level of refinement up from Maxwell's equations (Scott ). From this equation, we'll show how infinite uniform plane waves comprise one field solution (out of many possible) in free space. These uniform plane waves form the basis for understanding Fourier optics.

The plane wave spectrum concept is the basic foundation of Fourier Optics. The plane wave spectrum is a continuous spectrum of uniform plane waves, and there is one plane wave component in the spectrum for every tangent point on the far-field phase front. The amplitude of that plane wave component would be the amplitude of the optical field at that tangent point. Again, this is true only in the far field, defined as: Range = 2 D2 / λ where D is the maximum linear extent of the optical sources and λ is the wavelength (Scott ). The plane wave spectrum is often regarded as being discrete for certain types of periodic gratings, though in reality, the spectra from gratings are continuous as well, since no physical device can have the infinite extent required to produce a true line spectrum.

As in the case of electrical signals, bandwidth is a measure of how finely detailed an image is; the finer the detail, the greater the bandwidth required to represent it. A DC electrical signal is constant and has no oscillations; a plane wave propagating parallel to the optic axis has constant value in any x-y plane, and therefore is analogous to the (constant) DC component of an electrical signal. Bandwidth in electrical signals relates to the difference between the highest and lowest frequencies present in the spectrum of the signal. For optical systems, bandwidth also relates to spatial frequency content (spatial bandwidth), but it also has a secondary meaning. It also measures how far from the optic axis the corresponding plane waves are tilted, and so this type of bandwidth is often referred to also as angular bandwidth. It takes more frequency bandwidth to produce a short pulse in an electrical circuit, and more angular (or, spatial frequency) bandwidth to produce a sharp spot in an optical system (see discussion related to Point spread function).

The plane wave spectrum arises naturally as the eigenfunction or "natural mode" solution to the homogeneous electromagnetic wave equation in rectangular coordinates (see also Electromagnetic radiation, which derives the wave equation from Maxwell's equations in source-free media, or Scott ). In the frequency domain, with an assumed (engineering) time convention of, the homogeneous electromagnetic wave equation is known as the Helmholtz equation and takes the form:

where u = x, y, z and k = 2π/λ is the wavenumber of the medium.

Read more about this topic:  Fourier Optics

Famous quotes containing the words plane, wave and/or foundation:

    At the moment when a man openly makes known his difference of opinion from a well-known party leader, the whole world thinks that he must be angry with the latter. Sometimes, however, he is just on the point of ceasing to be angry with him. He ventures to put himself on the same plane as his opponent, and is free from the tortures of suppressed envy.
    Friedrich Nietzsche (1844–1900)

    Wind goes from farm to farm in wave on wave,
    But carries no cry of what is hoped to be.
    There may be little or much beyond the grave,
    But the strong are saying nothing until they see.
    Robert Frost (1874–1963)

    The most excellent and divine counsel, the best and most profitable advertisement of all others, but the least practised, is to study and learn how to know ourselves. This is the foundation of wisdom and the highway to whatever is good.... God, Nature, the wise, the world, preach man, exhort him both by word and deed to the study of himself.
    Pierre Charron (1541–1603)