Application To Finding Repeated Factors
As in calculus, the derivative detects multiple roots: if R is a field then R is a Euclidean domain, and in this situation we can define multiplicity of roots; namely, for every polynomial f(x) and every element r of R, there exists a nonnegative integer mr and a polynomial g(x) such that
where g(r) is not equal to 0. mr is the multiplicity of r as a root of f. It follows from the Leibniz rule that in this situation, mr is also the number of differentiations that must be performed on f(x) before r is not a root of the resulting polynomial. The utility of this observation is that although in general not every polynomial of degree n in R has n roots counting multiplicity (this is the maximum, by the above theorem), we may pass to field extensions in which this is true (namely, algebraic closures). Once we do, we may uncover a multiple root that was not a root at all simply over R. For example, if R is the field with three elements, the polynomial
has no roots in R; however, its formal derivative is zero since 3 = 0 in R and in any extension of R, so when we pass to the algebraic closure it has a multiple root that could not have been detected by factorization in R itself. Thus, formal differentiation allows an effective notion of multiplicity. This is important in Galois theory, where the distinction is made between separable field extensions (defined by polynomials with no multiple roots) and inseparable ones.
Read more about this topic: Formal Derivative
Famous quotes containing the words application to, application, finding, repeated and/or factors:
“If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“when man determined to destroy
himself he picked the was
of shall and finding only why
smashed it into because”
—E.E. (Edward Estlin)
“Manners are the happy way of doing things; each once a stroke of genius or of lovenow repeated and hardened into usage. They form at last a rich varnish, with which the routine of life is washed, and its details adorned. If they are superficial, so are the dewdrops which give such depth to the morning meadows.”
—Ralph Waldo Emerson (18031882)
“The economic dependence of woman and her apparently indestructible illusion that marriage will release her from loneliness and work and worry are potent factors in immunizing her from common sense in dealing with men at work.”
—Mary Barnett Gilson (1877?)