Boolean-valued Models
- Main article: Boolean-valued model
Perhaps more clearly, the method can be explained in terms of Boolean-valued models. In these, any statement is assigned a truth value from some complete atomless Boolean algebra, rather than just a true/false value. Then an ultrafilter is picked in this Boolean algebra, which assigns values true/false to statements of our theory. The point is that the resulting theory has a model which contains this ultrafilter, which can be understood as a new model obtained by extending the old one with this ultrafilter. By picking a Boolean-valued model in an appropriate way, we can get a model that has the desired property. In it, only statements which must be true (are "forced" to be true) will be true, in a sense (since it has this extension/minimality property).
Read more about this topic: Forcing (mathematics)
Famous quotes containing the word models:
“Today it is not the classroom nor the classics which are the repositories of models of eloquence, but the ad agencies.”
—Marshall McLuhan (19111980)