Definition
Fock space is the (Hilbert) direct sum of tensor products of copies of a single-particle Hilbert space
Here represents the states of no particles, the state of one particle, the states of two identical particles etc.
A typical state in is given by
where
- is a vector of length 1, called the vacuum state and is a complex coefficient,
- is a state in the single particle Hilbert space,
- , and is a complex coefficient
- etc.
The convergence of this infinite sum is important if is to be a Hilbert space. Technically we require to be the Hilbert space completion of the algebraic direct sum. It consists of all infinite tuples such that the norm, defined by the inner product is finite
where the particle norm is defined by
i.e. the restriction of the norm on the tensor product
For two states
- , and
the inner product on is then defined as
where we use the inner products on each of the -particle Hilbert spaces. Note that, in particular the particle subspaces are orthogonal for different .
Read more about this topic: Fock Space
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)