Flux Qubit

Flux Qubit

In quantum computing, flux qubits (also known as persistent current qubits) are micrometer sized loops of superconducting metal interrupted by a number of Josephson junctions. The junction parameters are engineered during fabrication so that a persistent current will flow continuously when an external flux is applied. The computational basis states of the qubit are defined by the circulating currents which can flow either clockwise or counter-clockwise. These currents screen the applied flux limiting it to multiples of the flux quantum and give the qubit its name. When the applied flux through the loop area is close to a half integer number of flux quanta the two energy levels corresponding to the two directions of circulating current are brought close together and the loop may be operated as a qubit.

Computational operations are performed by pulsing the qubit with microwave frequency radiation which has an energy comparable to that of the gap between the energy of the two basis states. Properly selected frequencies can put the qubit into a quantum superposition of the two basis states while subsequent pulses can manipulate the probability weighting that the qubit will be measured in either of the two basis states, thus performing a computational operation.

Read more about Flux Qubit:  Fabrication, Flux Qubit Parameters, Readout

Famous quotes containing the word flux:

    Existence is no more than the precarious attainment of relevance in an intensely mobile flux of past, present, and future.
    Susan Sontag (b. 1933)