Fisher Transformation - Definition

Definition

The transformation is defined by:

where "ln" is the natural logarithm function and "artanh" is the inverse hyperbolic function.

If (X, Y) has a bivariate normal distribution, and if the (Xi, Yi) pairs used to form r are independent for i = 1, ..., n, then z is approximately normally distributed with mean

and standard error

where N is the sample size.

This transformation, and its inverse,

can be used to construct a confidence interval for ρ.

Read more about this topic:  Fisher Transformation

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)